ультразвукова ударна обробка

Structural-phase mechanisms of controlling the structural and functional alloys complex surface properties by combined thermal, ionic and deformation effects

The perspective of using combined thermal, ionic and deformation effects as a tool for purposeful modification of the structural and phase states of the near-surface region of a wide class of structural and functional metal materials to increase the durability, quality and reliability of parts, products and structures of transport engineering and medicine has been proven. Steels 40X13, 08X18N10, 9Г2ФА, aluminum alloys AMg6, D16, cobalt alloy Co-Cr-Mo-W, brass LS59-1, titanium alloy VT6, multi-component alloys Fe81B7Si1P10Cu1, CrMnFeNi2CoCu, etc. were studied.

Scientific bases of mechanochemical UIT-synthesis of wear-resistant coverings of structural alloys of aviation equipment for increase of military ability

A new approach to the creation of composite wear-resistant coatings is proposed, which consists in realizing the advantages of combining the effect of mechanical nanocrystallization and mechanochemical reactions in the near-surface layers treated with ultrasonic impact treatment (UIT) in chemically active and inert media. This fundamentally distinguishes the proposed technique from the known methods of synthesis of bulk composite materials and provides more effective, compared to heat treatment and standard UIT schemes, surface hardening.

Physico-chemical basis for strengthening of the light structural alloys surface by ultrasonic shock treatment at cryogenic temperatures

Essentially new scientific knowledge has been obtained on the physico-materials science basics and the laws of the surface layers hardening of the light structural alloys by ultrasonic shock treatment (UST) at cryogenic temperatures. These regularities are due to the suppression of the dynamic return processes and dynamic recrystallization, as well as the effect of the dislocations annihilation under the action of the deep cooling factor.