армовані матеріали

Physicochemical bases of low-temperature synthesis (700 - 1500 оС) of ultra-refractory high-strength reinforced ceramics and metal-ceramics of multifunctional application

An integrated approach to the creation of scientific physicochemical foundations of the process of synthesis of large polycrystalline samples or products of reinforced ceramic high-temperature materials at low temperatures is implemented, which involves the use of a capillary-porous body with predetermined structural-geometric characteristics of pore channels as a medium for growing fibers reinforcement (the first at the level of separately taken powder particles from which a capillary-porous t is made) ceramic composite.

Physics of high-temperature strength of reinforced ceramic materials of special, functional and biomedical purposes

The basic regularities of the physical nature of strength of directionally solidified eutectic alloys (LaB6-MeB2, B4C-MeB2, Ti-TiB, Mo-Si-B, etc.) have been defined by systematic studies of the influence of the nature of the matrix and reinforcing phases, their structural-geometric characteristics, and stress-strain state on the temperature dependence of mechanical characteristics of composite materials.