Fundamental research

Fundamental regularities in the synthesis of multifunctional water treatment reagents by chemical activation of alumina waste

A new theory of targeted activation of waste ("red muds") of alumina production has been created, and multifunctional water treatment reagents with a specified structure and clearly defined coagulation, sorption and biosorption properties have been obtained in the processes of removing inorganic and organic substances of various types and origin (heavy metals, dyes, active substances) from contaminated water.

Methods of evaluation and guarantee of technical security’s required level for specialized multiprocessor control systems’ functioning

Purpose of the work is design of methods and means for determination of transition’s probability of reconfigurable multiprocessor system (MS) aimed to control the complex objects. This transition can lead to dangerous state. Also as result of the work is enhance of system functioning results’ veracity. During exploitation due to the processors’ failures MS can went into dangerous state (that is state when is only one (any) of control functions can not be realized and without of those the control object went into dangerous state).

Investigation of the asymptotic properties of pseudo-regularly varying functions and generalized renewal processes

The aim of this research project was to study the asymptotic behavior of pseudo-regular functions and their analogues in stochastic analysis - generalized renewal processes, as well as applications of the results obtained to the theory of stochastic processes, statistics of stochastic processes, mathematical analysis and mathematical physics.
In this project:

Formation of gradient states in nano layered metal film compositions via processes on the outer surface

Laws of energy induced diffusion phase-structural transformations in film functional-gradient materials with significantly different thermodynamic and crystal-chemical properties of the layers (V-Ag, Pd-Ho, Ni-Cu-Cr, etc.) were determined.
“Diffusion pump” effect was determined for investigated nanothickness materials: physical and chemical processes on outer surface thermodynamically determine diffusion phase formation in the bulk during energy impact in argon-, nitrogen-, oxygen-, hydrogen- containing atmospheres and in vacuum of 10-3 Pa, 10-7 Pa.

The processes of vapor generating in closed miniature evaporation-condensation systems with new coolants for space purposes

A complex study of heat transfer processes in constrained conditions in evaporative-condensation systems was carried out for the first time. A physical model of the boiling process on porous surfaces in conditions of limited space was developed and presented. Dependencies for calculating the heat transfer intensity under such conditions have been obtained. Such dependencies are necessary to create miniature cooling systems for microchips and powerful processors of electronic equipment.

Physico-chemical basis for strengthening of the light structural alloys surface by ultrasonic shock treatment at cryogenic temperatures

Essentially new scientific knowledge has been obtained on the physico-materials science basics and the laws of the surface layers hardening of the light structural alloys by ultrasonic shock treatment (UST) at cryogenic temperatures. These regularities are due to the suppression of the dynamic return processes and dynamic recrystallization, as well as the effect of the dislocations annihilation under the action of the deep cooling factor.

Regularities of quasihydrostatic compression influence on structure and mechanical properties of crystalline metal-like substances and quasicrystalline metallic materials

Regularities of quasihydrostatic compression influence on  structure and mechanical properties of crystalline metal-like  substances and quasicrystalline metallic materials

For the first time physical representations and theoretical assumptions about the regularities of the influence of quasi-hydrostatic compression, as the most stringent conditions of deformation, on the composition, phase transformations, structure, strength and plastic properties of crystalline metal-like and quasicrystalline metal phases, including titanium hydride with a high hydrogen content and Al-Fe-Cr alloy with finely dispersed particles of quasicrystalline phases.

Theoretical principles of processing of discrete functions with a modular argument and their use for monitoring of human biotelemetric data under emergency situations

The research is aimed to creating of new methods for digital data processing in real time, transmission of the signals under the noise conditions, application of ontological decision-making systems for reducing the time of determining the critical human state and applying an emergency care.

Robust adaptive control of electromechanical systems with improved dynamic performances and energy efficiency

The theory of analysis and synthesis of adaptive electromechanical systems with vector-controlled electrical motors is developed and generalized. Proposed theory allows synthesizing automatic control systems with the properties of robustness to electrical motor parameters variations, thereby improving their dynamic performances and efficiency. Methods for robust adaptive estimation of immeasurable coordinates and identification of unknown parameters of electromechanical converters are developed.

Hydrodynamics and heatmass trasfer in the contact heat utilizator of gas-droplet type

Scientific work is devoted to experimental research, aimed at improving the efficiency of contact heat and mass transfer units by increasing the interfacial surface of heat and mass transfer during the liquid spraying by centrifugal nozzles, implementation of which results in significant savings of material and energy resources.