Yurkova A.I.

Regularities of quasihydrostatic compression influence on structure and mechanical properties of crystalline metal-like substances and quasicrystalline metallic materials

Regularities of quasihydrostatic compression influence on  structure and mechanical properties of crystalline metal-like  substances and quasicrystalline metallic materials

For the first time physical representations and theoretical assumptions about the regularities of the influence of quasi-hydrostatic compression, as the most stringent conditions of deformation, on the composition, phase transformations, structure, strength and plastic properties of crystalline metal-like and quasicrystalline metal phases, including titanium hydride with a high hydrogen content and Al-Fe-Cr alloy with finely dispersed particles of quasicrystalline phases.

Phase and structural transformations in the composite nanostructural quasicrystalline aluminium alloys under severe plastic deformation, pressure and temperature

СЕМ зображення структури  сплаву Al94Fe3Cr3

On the base of the results determined by using modern physical material science methods scientific principles referred to relationships for combined effect of sever plastic deformation and temperature on diffusive processes, phase transformation, evolution of structure and thermal stability of mechanical properties of nanostructured composite Al alloys reinforced by ultra fine particles of metastable quasicrystalline phases has been developed for the first time.